Answer:
The value of the equation for z is [tex]z=\frac{83}{6-c-t}[/tex].
Step-by-step explanation:
Consider the provided equation.
[tex]-cz+6z=tz+83[/tex]
Subtract tz from both the sides.
[tex]-cz+6z-tz=tz-tz+83[/tex]
[tex]-cz+6z-tz=83[/tex]
Take z common.
[tex]z(-c+6-t)=83[/tex]
[tex]z(6-c-t)=83[/tex]
Divide 6-c-t from both the sides.
[tex]\frac{z(6-c-t)}{6-c-t}=\frac{83}{6-c-t}[/tex]
[tex]z=\frac{83}{6-c-t}[/tex]
Thus, the value of the equation for z is [tex]z=\frac{83}{6-c-t}[/tex].